Selectors
JointRanking
Bases: AbstractSelector
, AbstractFeatureGenerator
Joint ranking (Ortuzk et al. 2022)
Attributes:
Name | Type | Description |
---|---|---|
metadata |
Metadata containing information about the algorithms. |
|
use_multi_target |
Boolean indicating whether to use multi-target regression. |
|
normalize |
Method to normalize the performance data. |
|
regressors |
List of trained regression models. |
Source code in asf/selectors/joint_ranking.py
12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 |
|
__init__(metadata, model=None, hierarchical_generator=None)
Initializes the PerformancePredictor with the given parameters.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
model_class
|
The class of the regression model to be used. |
required | |
metadata
|
Metadata containing information about the algorithms. |
required | |
use_multi_target
|
Boolean indicating whether to use multi-target regression. |
required | |
normalize
|
Method to normalize the performance data. |
required | |
hierarchical_generator
|
Feature generator to be used. |
None
|
Source code in asf/selectors/joint_ranking.py
_fit(features, performance)
Fits the regression models to the given features and performance data.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
features
|
DataFrame
|
DataFrame containing the feature data. |
required |
performance
|
DataFrame
|
DataFrame containing the performance data. |
required |
Source code in asf/selectors/joint_ranking.py
_predict(features)
Predicts the performance of algorithms for the given features.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
features
|
DataFrame
|
DataFrame containing the feature data. |
required |
Returns:
Type | Description |
---|---|
A dictionary mapping instance names to the predicted best algorithm. |
Source code in asf/selectors/joint_ranking.py
generate_features(features)
Generates predictions for the given features using the trained models.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
features
|
DataFrame
|
DataFrame containing the feature data. |
required |
Returns:
Type | Description |
---|---|
DataFrame
|
DataFrame containing the predictions for each algorithm. |
Source code in asf/selectors/joint_ranking.py
MultiClassClassifier
Bases: AbstractModelBasedSelector
MultiClassClassifier is a class that predicts the best algorithm for a given instance using a multi-class classification model.
Attributes:
Name | Type | Description |
---|---|---|
model_class |
The class of the classification model to be used. |
|
metadata |
Metadata containing information about the algorithms. |
|
classifier |
The trained classification model. |
Source code in asf/selectors/mutli_class.py
__init__(model_class, metadata, hierarchical_generator=None)
Initializes the MultiClassClassifier with the given parameters.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
model_class
|
The class of the classification model to be used. |
required | |
metadata
|
Metadata containing information about the algorithms. |
required | |
hierarchical_generator
|
Feature generator to be used. |
None
|
Source code in asf/selectors/mutli_class.py
_fit(features, performance)
Fits the classification model to the given feature and performance data.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
features
|
DataFrame
|
DataFrame containing the feature data. |
required |
performance
|
DataFrame
|
DataFrame containing the performance data. |
required |
Source code in asf/selectors/mutli_class.py
_predict(features)
Predicts the best algorithm for each instance in the given feature data using simple multi class classification.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
features
|
DataFrame
|
DataFrame containing the feature data. |
required |
Returns:
Type | Description |
---|---|
A dictionary mapping instance names to the predicted best algorithm. |
Source code in asf/selectors/mutli_class.py
PairwiseClassifier
Bases: AbstractModelBasedSelector
, AbstractFeatureGenerator
PairwiseClassifier is a selector that uses pairwise comparison of algorithms to predict the best algorithm for a given instance.
Attributes:
Name | Type | Description |
---|---|---|
model_class |
ClassifierMixin
|
The classifier model to be used for pairwise comparisons. |
classifiers |
list[ClassifierMixin]
|
List of trained classifiers for pairwise comparisons. |
Source code in asf/selectors/pairwise_classifier.py
10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 |
|
__init__(model_class, metadata, hierarchical_generator=None, use_weights=True)
Initializes the PairwiseClassifier with a given model class and hierarchical feature generator.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
model_class
|
ClassifierMixin
|
The classifier model to be used for pairwise comparisons. |
required |
hierarchical_generator
|
AbstractFeatureGenerator
|
The feature generator to be used. Defaults to DummyFeatureGenerator. |
None
|
Source code in asf/selectors/pairwise_classifier.py
_fit(features, performance)
Fits the pairwise classifiers using the provided features and performance data.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
features
|
DataFrame
|
The feature data for the instances. |
required |
performance
|
DataFrame
|
The performance data for the algorithms. |
required |
Source code in asf/selectors/pairwise_classifier.py
_predict(features)
Predicts the best algorithm for each instance using the trained pairwise classifiers.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
features
|
DataFrame
|
The feature data for the instances. |
required |
Returns:
Name | Type | Description |
---|---|---|
dict |
A dictionary mapping instance names to the predicted best algorithm. |
Source code in asf/selectors/pairwise_classifier.py
generate_features(features)
Generates features for the pairwise classifiers.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
features
|
DataFrame
|
The feature data for the instances. |
required |
Returns:
Type | Description |
---|---|
np.ndarray: An array of predictions for each instance and algorithm pair. |
Source code in asf/selectors/pairwise_classifier.py
PairwiseRegressor
Bases: AbstractModelBasedSelector
, AbstractFeatureGenerator
PairwiseRegressor is a selector that uses pairwise regression of algorithms to predict the best algorithm for a given instance.
Attributes:
Name | Type | Description |
---|---|---|
model_class |
The regression model to be used for pairwise comparisons. |
|
regressors |
List of trained regressors for pairwise comparisons. |
Source code in asf/selectors/pairwise_regressor.py
__init__(model_class, metadata, hierarchical_generator=None)
Initializes the PairwiseRegressor with a given model class and hierarchical feature generator.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
model_class
|
The regression model to be used for pairwise comparisons. |
required | |
hierarchical_generator
|
AbstractFeatureGenerator
|
The feature generator to be used. Defaults to DummyFeatureGenerator. |
None
|
Source code in asf/selectors/pairwise_regressor.py
_fit(features, performance)
Fits the pairwise regressors using the provided features and performance data.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
features
|
DataFrame
|
The feature data for the instances. |
required |
performance
|
DataFrame
|
The performance data for the algorithms. |
required |
Source code in asf/selectors/pairwise_regressor.py
_predict(features)
Predicts the best algorithm for each instance using the trained pairwise regressors.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
features
|
DataFrame
|
The feature data for the instances. |
required |
Returns:
Name | Type | Description |
---|---|---|
dict |
A dictionary mapping instance names to the predicted best algorithm. |
Source code in asf/selectors/pairwise_regressor.py
generate_features(features)
Generates features for the pairwise regressors.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
features
|
DataFrame
|
The feature data for the instances. |
required |
Returns:
Type | Description |
---|---|
np.ndarray: An array of predictions for each instance and algorithm pair. |
Source code in asf/selectors/pairwise_regressor.py
PerformanceModel
Bases: AbstractModelBasedSelector
, AbstractFeatureGenerator
PerformancePredictor is a class that predicts the performance of algorithms based on given features. It can handle both single-target and multi-target regression models.
Attributes:
Name | Type | Description |
---|---|---|
model_class |
The class of the regression model to be used. |
|
metadata |
Metadata containing information about the algorithms. |
|
use_multi_target |
Boolean indicating whether to use multi-target regression. |
|
normalize |
Method to normalize the performance data. |
|
regressors |
List of trained regression models. |
Source code in asf/selectors/performance_model.py
11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 |
|
__init__(model_class, metadata, use_multi_target=False, normalize='log', hierarchical_generator=None)
Initializes the PerformancePredictor with the given parameters.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
model_class
|
The class of the regression model to be used. |
required | |
metadata
|
Metadata containing information about the algorithms. |
required | |
use_multi_target
|
Boolean indicating whether to use multi-target regression. |
False
|
|
normalize
|
Method to normalize the performance data. |
'log'
|
|
hierarchical_generator
|
Feature generator to be used. |
None
|
Source code in asf/selectors/performance_model.py
_fit(features, performance)
Fits the regression models to the given features and performance data.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
features
|
DataFrame
|
DataFrame containing the feature data. |
required |
performance
|
DataFrame
|
DataFrame containing the performance data. |
required |
Source code in asf/selectors/performance_model.py
_predict(features)
Predicts the performance of algorithms for the given features.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
features
|
DataFrame
|
DataFrame containing the feature data. |
required |
Returns:
Type | Description |
---|---|
A dictionary mapping instance names to the predicted best algorithm. |
Source code in asf/selectors/performance_model.py
generate_features(features)
Generates predictions for the given features using the trained models.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
features
|
DataFrame
|
DataFrame containing the feature data. |
required |
Returns:
Type | Description |
---|---|
DataFrame
|
DataFrame containing the predictions for each algorithm. |
Source code in asf/selectors/performance_model.py
SimpleRanking
Bases: AbstractModelBasedSelector
Algorithm Selection via Ranking (Oentaryo et al.) + algo features (optional). Attributes: model_class: The class of the classification model to be used. metadata: Metadata containing information about the algorithms. classifier: The trained classification model.
Source code in asf/selectors/simple_ranking.py
8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 |
|
__init__(model_class, metadata, hierarchical_generator=None)
Initializes the MultiClassClassifier with the given parameters.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
model_class
|
The class of the classification model to be used. Assumes XGBoost API. |
required | |
metadata
|
Metadata containing information about the algorithms. |
required | |
hierarchical_generator
|
Feature generator to be used. |
None
|
Source code in asf/selectors/simple_ranking.py
_fit(features, performance)
Fits the classification model to the given feature and performance data.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
features
|
DataFrame
|
DataFrame containing the feature data. |
required |
performance
|
DataFrame
|
DataFrame containing the performance data. |
required |
Source code in asf/selectors/simple_ranking.py
_predict(features)
Predicts the best algorithm for each instance in the given feature data.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
features
|
DataFrame
|
DataFrame containing the feature data. |
required |
Returns:
Type | Description |
---|---|
A dictionary mapping instance names to the predicted best algorithm. |