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Abstract

Empirical performance models (EPMs) predict algorithm
performance without execution, enabling applications such
as algorithm selection, surrogate-based optimisation, and
benchmarking. However, their effectiveness is currently con-
strained by the quality of feature representations and the pre-
dictive models themselves. My thesis advances EPMs by ad-
dressing both limitations. To further enhance usability and
foster broader adoption, I also introduce a Python library that
unifies state-of-the-art methods under a single API. These
contributions aim to make EPMs more accurate, versatile, and
accessible to the broader Al community.

Introduction

Empirical performance prediction is a fundamental task with
many applications. At its core, it seeks to predict perfor-
mance of an algorithm from features or hyperparameter con-
figurations, without executing the algorithm. Empirical per-
formance models (EPMs) have numerous applications, in-
cluding surrogate-based optimisation, algorithm selection,
explainability, benchmarking, and more (Hutter et al. 2014).
My thesis aims to improve EPMs for different use cases by
exploring two directions:

* Improving the features provided to the EPM
* Building better performance models

The ultimate goal of my thesis is to develop better EPMs
that are more widely used and beneficial in practice.

Formal definition

In empirical performance prediction, given a feature set z €
F which describe a problem instance (e.g., a SAT instance
or a machine learning dataset), and/or a (hyper)parameter
configuration of an algorithm 6§ € © (e.g., SAT solver con-
figuration or hyperparameters of a neural network), the goal
is to build a surrogate model f that predicts the performance
of the algorithm f : F x ® — P. In some use cases (such
as model-based configuration (Hutter, Hoos, and Leyton-
Brown 2011)), it is also necessary to predict the uncertainty
of the prediction, commonly expressed in terms of variance
o2 f : F x©® — P x V. Furthermore, there exist also
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specialised EPMs that predict the distribution of the per-
formance of stochastic algorithms (Eggensperger, Lindauer,
and Hutter 2018): f : F x ® — A(P).

Related work

Research on EPMs has a long history. For example, SATzilla
2004 (Nudelman et al. 2004) predicts the running times of
SAT solvers to perform algorithm selection. The authors also
introduced the SATzilla feature set, which describes SAT in-
stances. In 2007, SATzilla achieved state-of-the-art perfor-
mance, winning the SAT competition, by using an improved
hierarchical EPM (Xu et al. 2008). Later, SMAC (Hutter,
Hoos, and Leyton-Brown 2011) employed a random for-
est as an EPM to predict the performance of A/P-complete
problem solvers (such as MIP and SAT solvers) over an in-
stance set, with the goal of configuring such solvers to ob-
tain well-performing configurations for the given set of in-
stances.

EPMs have prominent usage in benchmarking in vari-
ous fields, such as machine learning (Pfisterer et al. 2022)
and N'P-complete solvers (Eggensperger et al. 2015). Ad-
ditionally, EPMs have prominent usage in algorithm selec-
tion, where the best algorithm needs to be selected based
on cheaply extracted features (Xu et al. 2008). Additional
use-cases include explainability (Hutter, Hoos, and Leyton-
Brown 2013) as well as data-center operations (Lee, Phan-
ishayee, and Mahajan 2025).

Hutter et al. (2014) evaluated multiple EPMs in various
scenarios and found that a modified random forest works
best for the task. Today, various EPMs are employed in prac-
tice, most commonly Gaussian processes (Rasmussen and
Williams 2006), random forests (Breiman 2001), and XG-
Boost (Chen and Guestrin 2016), depending on the task, the
amount of available data, and the type of feature space (cat-
egorical, continuous, or mixed).

Research questions
My thesis addresses three main research questions:

* How can we obtain better features for empirical perfor-
mance prediction?

* How can we design more effective empirical perfor-
mance models?



* How can we encourage their broader adoption in diverse
fields?

Since starting my PhD, I have already made significant
progress toward answering all three research questions, with
additional progress expected in the coming year.

Research progress

In this section I provide a description of the published
projects from my thesis.

Revisiting SATzilla features in 2024. In this work (Shavit
and Hoos 2024), we introduced an improved version of the
SATzilla feature extraction tool, which describes SAT in-
stances. The previous version of the tool suffered from var-
ious errors that resulted in many instances missing even the
most basic features. In the new version, we modernised the
feature extraction process and showed that, using our im-
proved feature extraction tool, it is possible to achieve better
results on three downstream tasks: satisfiability prediction,
performance prediction, and algorithm selection.

ASF: Algorithm selection framework. While many
methods to build EPMs and algorithm selectors have been
introduced, there exists no package that allows for easy us-
age of these methods as well as their comparison. A uni-
fied implementation is especially valuable for the advance-
ment of EPMs, since EPMs are used in diverse application
fields with redundant efforts. ASF is a library that provides
an easy-to-use interface for empirical performance predic-
tion and algorithm selection by integrating multiple state-of-
the-art methods within a unified API. It also allows stacking
EPMs and selectors, as well as tuning them. While an early
version of ASF is already available', further development is
underway, including the implementation of more methods
and features.

Works under review. Additional projects which are cur-
rently under review or in an advanced state of preparation
include:

e Improving the performance of EPMs used in model-
based algorithm configuration through dynamic ensem-
bling.

* Investigating new methods to create more accurate
EPMs.

» Better explainability and insights of the problems using
EPMs.

* Assessing dimensionality reduction methods to create
EPMs for high dimensional problems.

Take-home message

The key message of my thesis is that empirical performance
models can be made more accurate, versatile, and usable
by jointly improving feature representations, model design,
and accessibility. Through new methods and tools, I aim to
broaden their adoption and impact in Al research and prac-
tice.

"https://github.com/hadarshavit/asf
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